Number theoretic transform modulo K.2N+1, a prime

نویسندگان

  • Mrinmoy Bhattacharya
  • Jaakko Astola
چکیده

Due to its simple and real arithmetic structure Number Theoretic Transform is attractive for computation of convolution. However, there exists a stringent relation between the choice of modulus M and convolution length. Choice of modulus as K.2+1, a prime, leads to relaxation of this constraint and wide choices of wordlength, with each of these associated with many choices of convolution length are are obtained. Under these choice of modulus a computational structure when the convolution length is a perfect square is presented..

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Functions Taking Only Prime Values

For n = 1, 2, 3, . . . define S(n) as the smallest integer m > 1 such that those 2k(k − 1) mod m for k = 1, . . . , n are pairwise distinct; we show that S(n) is the least prime greater than 2n− 2 and hence the value set of the function S(n) is exactly the set of all prime numbers. For every n = 4, 5, . . . , we prove that the least prime p > 3n with p ≡ 1 (mod 3) is just the least positive int...

متن کامل

Some Historical Notes on Number Theoretic Transform

Modulo arithmetic modulo a prime integer have many interesting properties. Such properties are found in standard books on number theory. Some properties are especially of interest to the signal processing application. It was observed analogy exists between some of them and that cyclic convolution of two sequences modulo a prime integer of two sequences could be computed in integer domain as can...

متن کامل

Low-Power Radix-8 Booth Encoded Modulo 2n − 1 Multiplier with Adaptive Delay

A special moduli set Residue Number System (RNS) of high dynamic range (DR) can speed up the execution of very-large word-length repetitive multiplications found in applications like public key cryptography. The modulo 2n − 1 multiplier is usually the noncritical datapath among all modulo multipliers in such high-DR RNS multiplier. This timing slack can be exploited to reduce the system area an...

متن کامل

Properties for a Certain Family of Knot Diagrams

In this note, we consider arithmetic properties of the function K(n) = (2n)!(2n + 2)! (n− 1)!(n + 1)!2(n + 2)! which counts the number of two–legged knot diagrams with one self– intersection and n − 1 tangencies. This function recently arose in a paper by Jacobsen and Zinn–Justin on the enumeration of knots via a transfer matrix approach. Using elementary number theoretic techniques, we prove v...

متن کامل

DESIGN OF BOOTH ENCODED MODULO 2n-1 MULTIPLIER USING RADIX-8 WITH HIGH DYNAMIC RANGE RESIDUE NUMBER SYSTEM

A special moduli set Residue Number System (RNS) of high Dynamic Range (DR) can speed up the execution of verylarge word-length repetitive multiplications found in applications like public key cryptography. The modulo 2n-1 multiplier is usually the noncritical datapath among all modulo multipliers in such high-DR RNS multiplier. This timing slack can be exploited to reduce the system area and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000